Accurately estimate the state of charge (SOC) of the power battery pack, that is, the remaining battery power, ensure that the SOC is maintained within a reasonable range, and prevent damage to the battery due to over-charging or over-discharging, thereby predicting the hybrid vehicle storage at any time. How much energy is left in the battery or the state of charge of the energy storage battery.
2. Dynamic monitoring of the working status of the power battery packDuring the charging and discharging process of the battery, the terminal voltage and temperature, the charging and discharging current, and the total voltage of the battery pack of each battery in the power battery pack are collected in real time to prevent overcharging or overdischarging of the battery. At the same time, the status of the battery can be given in a timely manner, and the problematic battery is selected to maintain the reliability and high efficiency of the operation of the entire battery, making it possible to realize the remaining battery estimation model. In addition to this, we also need to establish a usage history file for each battery to provide information for the further optimization and development of new types of electricity, chargers, motors, etc., to provide the basis for offline analysis system failure.
3, the balance between the single batteryThat is, the equalization charge of the single cells enables the batteries in the battery pack to reach a state of equilibrium. Balanced technology is the key technology for a battery energy management system that the world is currently researching and developing.
Decrypt BYD battery management systemFirst of all, let's talk about the battery of Tang and Qin. The model should be the same, except that Qin’s battery pack has a relatively small number of batteries, a capacity of 13 degrees, and Tang’s more, 18 degrees. The individual batteries are BYD's own lithium iron phosphate batteries, rated voltage 3.2V, capacity 26AH. Why isn’t the recently-triggered ternary lithium battery? The reason is as follows:
Lithium iron phosphate batteries have better lifespan and safety, and are more suitable for plug-in hybrid vehicles.
The battery cell platform is like this, but this should be on the bus, because the electricity reserves up to 120AH, we only have 26AH, but roughly the same, all rectangular.
Don's battery pack is located in the middle of the chassis, and its size and weight are relatively large. The advantage of putting in the chassis is to reduce the vehicle's center of gravity without affecting the trunk space. Disadvantages Well, the requirements for water discharge and bump prevention are relatively high. Everyday use should be careful not to soak in water, and do not bump.
This is Qin's battery pack, located in the back seat, before the trunk. Advantages Well, the anti-collision performance is very good, disadvantages. . . The center of gravity is relatively high, affecting the trunk space, and it is relative to Tang Zhenghao.
The connection method is serial (all battery cells are connected in series). The battery in series is shown in the figure below. The image is a bit similar to the flashlight we used before. Several batteries are connected end to end.
In this connection method, each cell discharges using the same current when discharging, and the same current is charged when charging, and a single cell cannot be charged or discharged without using an equalization system. Moreover, when a battery is full, it is necessary to stop charging the entire battery pack, or the battery will be overcharged and damaged. When one battery is empty, the entire battery pack will stop discharging, otherwise the battery pack will Put damage.
Do you still remember what the flashlight requires? By the way, the old and new batteries cannot be mixed, which means that batteries with electricity and no electricity cannot be mixed. Why does the landlord say this? because. . . It will be used later. Well, we went back to the battery packs of Tang and Qin. The diagram above shows a few batteries. Under normal circumstances, their electricity reserves should be exactly the same, they should be filled together, and should be vented together. If this cycle continues, there will be no problems at the beginning of the article. In fact, after the battery pack has been used for a period of time, there will be a difference in the amount of charge stored in each battery. There are many reasons for the difference. For example, the capacity of the battery itself is inconsistent, or the internal resistance is inconsistent, and the operating temperature is inconsistent. There is a difference in capacity. When the charge of each cell is inconsistent, the following figure will appear:
On the surface, there is only one cell that has lost a bit of power. There are so many cells that should not have any impact. We continue to look down and see what happens when this battery pack is discharged:
The entire battery pack released 80% of its power, and at this time, the originally dissatisfied battery was empty, and the battery was about to stop discharging. If the battery pack's power reserve is 10 degrees, then under the full condition, the unbalanced battery pack will not be able to discharge 80% of the discharge, that is, 8 degrees. On the surface, only 5% of the power is lost, but it leads to 20 % of capacity cannot be used. This is still the case when only four batteries are compared. If it is more than 200, it can be imagined how big the impact is.
What happens if there is an imbalance? This requires the use of an equalization module for the battery management system. Tang and Qin’s equalization module uses a passive equalization method, that is, discharge the higher voltage cell through the bypass resistor to reach the same voltage as other cells. That's it:
Each cell has a resistor that is individually controlled by the battery management system. When needed, the circuit of this resistor is turned on to discharge the cell. After a certain period of time, this unbalanced battery pack becomes like this:
The battery capacity is the same, recharge can be full, discharge is empty, everything is back to normal, capacity is back, and battery life is back! It sounds beautiful, right? Why are so many cars failing to achieve this effect?
First of all, this discharge process is very slow! When the charging process, the current can reach 10A or more (10000mA), and this discharge it? It is understood that the maximum current allowed by the discharge resistor is 30ma~. In the case that the equalizer system is always in the optimal equilibrium state, the difference in equalized electricity is also needed for about 100 hours!
Second, the equilibrium system is not always working at its best. To have a good working condition, the system needs to know which cells need to be discharged and how much power needs to be discharged. This process can not be done with any power.
This is a graph of the discharge of a lithium iron phosphate battery. It can be seen that the voltage difference is very small above 15%. It is very difficult or even impossible to find out which cells need to be discharged and how much to put at this time. Therefore, to make the balanced system work efficiently, it is necessary to use the battery at a rate of 15% or less in real time. Then it is fully charged and the car is in equilibrium. The equilibrium efficiency at this time is the highest. Unless you use a car, you are advised to wait until the equilibrium is over (that is, the dashboard is completely extinguished). In the case of unbalanced battery packs, it takes about 20 hours for a balance to be equalized. Everyone can calculate how many cycles are needed based on the lack of power in their battery packs.
This leads to another problem: After the balance is over, a little electricity is used, then it is full, and the vehicle will enter a state of equilibrium again. Should this time be included in the effective balance? According to the landlord's experience, this equilibrium is almost ineffective. Because Tang and Qin's battery packs are not balanced, the vast majority are that the voltage of one of the two batteries is too low and they need to discharge a large number of other batteries. When the battery is low, the remaining battery cells can be marked correctly. Under high battery power, the system will only mark one battery cell that has the highest voltage when it is fully charged. This is one, and it can be imagined that the efficiency is almost negligible.
Below, the landlord is telling everyone, what kind of battery is no problem, what kind of problem. Here, the landlord borrowed 14 Qin DCT software battery monitoring modules to display data. Don does not support this, but the principle of the battery pack is the same. Many people go to check the battery, found that their own minimum voltage battery only 2.6-2.8V, I feel this battery problem, and then require 4S shop replacement, 4S apply the manufacturer's form, give a normal reply, the customer will feel the manufacturers Perfunctory. In fact, the lower voltage of a single cell is normal. The ideal situation is that 5% power is that all voltage cells are below 3V, so that all battery power is released. Of course, such a battery is almost non-existent. It requires that all batteries have very consistent it is good. In general, the basis for judging the condition of the battery pack is that in the case of 5%, the minimum cell voltage is lower than 3V, and the highest voltage cell voltage is lower than 3.15V (discharge to 5% of the instantaneous voltage can be stored After a while, the voltage will rise and it will not rise again.) Replacement battery manufacturers have their own standards, if you meet the conditions for replacement, you can choose to replace, but the landlord also recommends that you use the correct balance method to balance 100 hours, if the effect is not obvious and then change. Because the replacement of the batteries and the original batteries have been attenuated is difficult to match the same. Here is a complete record of the landlord’s car balance:
Landlord's car before the balance, the meter shows that 8.5 degrees filled, pure electric mileage gold barely 55KM right foot, there are three groups of batteries have problems, have been to the 4S shop, testing that can be replaced, but the landlord did not change, but insist on equilibrium. It can be seen that, with the continuous accumulation of time, the voltage of the highest voltage cell of the landlord has been steadily declining, and the 240-hour equilibrium time has decreased from 3.247V to 3.111V. The storage capacity increased from 8.5 to 11.5 degrees, and the battery pack's power was effectively restored. (Amount, you say why is not 13 degrees, it is 11.5, 14 paragraphs of Qin 11.5 degrees have already been very good achievement, there are almost 14 Qin electric meters that the owner can exceed 12 degrees, do not ask me why, my car mentions car battery pack The mark is 12 degrees, it took two years, some naturally attenuates) In the most recent test, the voltage of the highest voltage cell has already been lower than 3.1V, the equilibrium condition is very good.
According to the experience of the landlord and the e-car Xia, Tang and Qin’s battery equalization logic is like this:
First, the system will mark the batteries that need to be discharged and the time that they need to be discharged when the power is low (for 15%) and high (full of power off), and these two marking methods are obviously more marked when the power is low. Effective and much more efficient.
Then, at the right time - when the vehicle is known to be powered on and when it is fully charged (the instrument panel is turned into a backlight with a red plug, but the backlight is not turned off), the battery cell needs to be discharged through the battery management system. Discharge. After reaching the marked time, the equalization system is disconnected and the equalization ends. After the next condition is ripe, mark it again and discharge it again to equalize. This equalization process is divided into intra-group equilibrium and inter-group equilibrium, that is, the internal equilibrium voltage of each battery group, and the balance among different battery groups. This process does not understand the specific logic at present, but for the user, as long as you know the overall balance logic.
This is the case where the landlord's car recently used 5%. The landlord used this time to do a balanced experiment. The purpose is to verify the logic of a balanced system discharge. In the middle charge, the voltage difference of each cell is very small, so the mark at this time will affect the efficiency, you want a better balance, or use low battery!
At 5%, the voltage difference is 0.15V, while 43% is only about 0.008V.
This is the case of the battery pack when the battery is about to be fully charged (it can be seen that the landlord's car is 96% full because it is now full). Tang and Qin charge the cut-off voltage should be around 3.7V, there is a battery more than 3.7V will immediately stop charging, the landlord this photo shoot the moment, stop charging. You can see this battery pack, the voltage of the lowest voltage cell also exceeds 3.52V, which shows that the balance of this car is very good.
This is the voltage after a few hours after the balance is full.
This is the case where 5% is used after a complete equilibrium has been completed. It can be seen that the batteries with the lowest voltage in each group basically did not appear in this table. The change of the lowest voltage cell number represents that the equalization system has completed their task well: by discharging the other cells and charging them together, the voltage of the lowest voltage cell is raised.
battery power. . . Currently it is 21.8AH, not much to 11 kWh. The factory is 24,12 kWh, but 92% will be full. In 2 years, there is no basic attenuation, and it is still good. Of course, not enough 13 degrees is also a bit tangled, but fortunately the endurance temperature is 70KM without pressure.
However, before discussing more issues concerning the balance of reservation charges, the exploration of Xia Ge has basically understood the logic.
The conclusion is roughly as follows: There is no trickle charging function for scheduled charging and the battery pack cannot be charged. The balanced system is started at this time, but the operating efficiency is very low, and only 1-2 batteries can be discharged. The effect is almost negligible. It is unscientific to try to use reservations to increase the equilibrium time when booking charging or using the price of a valley.
We introduced the working methods of the next battery pack, the logic of the balanced system, and how to determine the status of the battery pack. Below, let's look at the reasonable and balanced approach that the group and small partners collectively conclude:
1, normal car, to the battery lower battery (recommended 20% or less, more than 10%)
2, insert the gun charge, do not power off the end of the charge, so that the balance of the system fully balanced to the instrument panel black (if you can drive away, the balance of the front hours is still valid)
3, after the completion of the normal car.
This is a cycle, the balance of time is an effective balance, the rest is accumulated enough time. Like the landlord's car, the cumulative equilibrium of more than 200 hours to achieve a more complete effect.
The balance we talked about above is based on the fact that the batteries have no problem. If there is a problem with a cell and the actual capacity is reduced, then no matter how well the balanced system works, it will not help. How to judge the battery problem?
The voltage inconsistency caused by the equalization problem is 5% when the lowest voltage cell is the same as the lowest voltage cell at 100%. The battery problem leads to 5% when the lowest voltage cell has a higher voltage or even the highest voltage at 100%. If your battery pack is such a situation, then there is no other way to replace the problematic electricity. Core it!
Finally, the landlord answered several questions at the beginning of the article.
Insufficient charging capacity and lack of pure electric cruising range: There is a problem with the balance of the battery pack or there is a problem with one of the batteries. The solution is to first determine what kind of situation it is. The corresponding processing suggestions have already been introduced in the article.
Charging jump: When the battery pack is charging, it is at a certain percentage (for example, 96%), and the percentage that does not pass behind directly reaches 100%. The reason is that the system has more battery pack capacity than the actual battery pack. When charging to this percentage, the voltage of the cell already reaches the voltage at which the charge is terminated. Therefore, the system stops charging, and at the same time, it determines that the amount of electricity is 100%. The reason for this problem is that the amount of charge is insufficient.
When the battery power is low, the battery power drops rapidly: Because of the discharge characteristics of the lithium iron phosphate battery, the very long platform voltage variation in the middle is very low, and the system can only estimate the remaining battery power. When the remaining power of the cell reaches 15% (corresponding to the cell voltage is about 3.18V at this time), the voltage will suddenly drop. Tang and Qin’s battery management system will re-estimate the remaining capacity of the battery pack when the battery reaches this voltage. If the remaining battery capacity is displayed as 30% at this time, and the system re-estimates it as only 15%, then the management system It will increase the rate of decline in electricity displayed by the meter. The result is that the original 1% can run 800 meters, but only 400 meters can be run at this time.
The Difficulties of Domestic Battery Management System BMSThe development of new energy vehicles is not easy. In the past two years, with the large number of new energy vehicles being used, we have also heard many “scandals†about new energy vehicles: spontaneous combustion, false cruising range, and why. What are these usage problems? The main reason for not using a battery management system or using a poor quality, immature battery management system. In fact, the safety issue of new energy vehicles has always been one of the key tasks of the government and the automotive industry. Not long ago, the four ministries and commissions including the Ministry of Science and Technology, the Ministry of Finance, the Ministry of Industry and Information Technology, and the National Development and Reform Commission have jointly issued the “Safety Order†for the demonstration and promotion of new energy vehicles (ie, the “Letter on Strengthening the Safety Management of Energy Conservation and New Energy Vehicles Demonstration and Promotionâ€), emphasizing “The plug-in hybrid vehicles and pure electric vehicles that have been put into demonstration operations should all be equipped with real-time monitoring systems for vehicle operating technology (BMS), and in particular, there should be a variety of causes for the spontaneous combustion of power batteries and fuel cell electric vehicles. Without installing a battery management system, you can sit back and relax. For example, in terms of safety, accuracy, longevity, and discharge capacity, a single battery can be charged and discharged 2000 times, and it may be only 1,000 times after it is assembled into a battery pack. If you carry an immature BMS, The battery charge/discharge status cannot be accurately monitored in real time, which can easily cause local power consumption of the battery core to be too large, generate local heat, and the information cannot be transmitted to the driver, which can easily lead to spontaneous combustion of the battery.Industry believes that installing excellent battery management BMS can effectively improve the utilization of the battery and prevent the battery from overcharging and Discharge and extend battery life, battery health monitoring and various single-core battery, the battery pack effectively prevent spontaneous combustion, in case of emergency in advance to make emergency warning to the driver, to gain time for security purposes.
The future of new energy vehicles and battery management systemsThe new energy automobile industry in China began in the early 21st century. It has not been developed for more than a decade. Due to people's desire for environmental protection and renewable energy, new energy vehicles have ushered in opportunities for development. After that, they are out of control and in a long period of time. In the future, new energy vehicles will be used as a challenger to invade the vast market that originally belonged to traditional fuel vehicles, and due to the needs of social development, the encroachment of this market share can be expected.
While looking at the rapid development of new energy vehicles, we must clearly understand that technological development is the basis for the development of the industry, and stable, efficient, safe, and reliable products are the embodiment of technology. We must know that the current domestic The new energy automobile industry is not friendly, frequent spontaneous combustion events and false cruising range of electric vehicles have exposed the current domestic design of the new energy battery pack, battery management system, testing, production standards are not perfect.
At present, there are more than 100 domestic BMS companies, but only a few European and American developed countries. Large-scale new energy automobile manufacturers either choose their own R&D battery management system or use BMS manufacturing companies headed by the internationally competitive German and Japanese companies, in fact, China. There is no lack of excellent BMS manufacturing companies in China. As mentioned in the article, Shenzhen Guoxin Power is a company with core competitiveness and focuses on product quality. Its BMS system has been mass-produced, and it has been deployed in Shaanxi Tongjia and Zhongtai. Some of the new energy vehicles in the car can also be used in pure electric or hybrid low-speed vehicles, passenger cars, logistics vehicles, field vehicles, buses, coaches, energy storage systems and other fields according to actual needs. They are stable and efficient. The safe, reliable and reliable BMS platform products are highly praised by customers.
The absence of technical parameters and standards, and no authoritative authority to conduct authoritative testing on BMSs produced by manufacturers, is currently the predicament of the domestic BMS market, resulting in a variety of BMS products that are difficult to popularize in large scale. At the same time, many domestic automakers and battery PAC companies are not sufficiently aware of the importance of BMS. They believe that as long as the individual cell cores can be linked, they can guarantee the vehicle operation, and their safety will be fortunate. They will be blindly involved in the procurement of BMSs. In pursuit of low prices, in order to sign a contract, some bad BMS suppliers only have to reduce BMS functional indicators or simply castrate part of their functions, thus burying hidden security risks. This is also irresponsible and damaging to the entire industry. Only by establishing a unified industry standard as soon as possible, suppressing manufacturers that do not meet the requirements of the market, and establishing a sound inspection system, can the battery management system and new energy vehicles have a sustainable development future. This is also the demand of many manufacturers and consumers.
ZGAR TWISTER Disposable
ZGAR electronic cigarette uses high-tech R&D, food grade disposable pod device and high-quality raw material. All package designs are Original IP. Our designer team is from Hong Kong. We have very high requirements for product quality, flavors taste and packaging design. The E-liquid is imported, materials are food grade, and assembly plant is medical-grade dust-free workshops.
Our products include disposable e-cigarettes, rechargeable e-cigarettes, rechargreable disposable vape pen, and various of flavors of cigarette cartridges. From 600puffs to 5000puffs, ZGAR bar Disposable offer high-tech R&D, E-cigarette improves battery capacity, We offer various of flavors and support customization. And printing designs can be customized. We have our own professional team and competitive quotations for any OEM or ODM works.
We supply OEM rechargeable disposable vape pen,OEM disposable electronic cigarette,ODM disposable vape pen,ODM disposable electronic cigarette,OEM/ODM vape pen e-cigarette,OEM/ODM atomizer device.
Disposable E-cigarette, ODM disposable electronic cigarette, vape pen atomizer , Device E-cig, OEM disposable electronic cigarette
ZGAR INTERNATIONAL(HK)CO., LIMITED , https://www.zgarpods.com